Vertical Distribution Relations for Special Cycles on Unitary Shimura Varieties

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Cycles on Unitary Shimura Varieties I. Unramified Local Theory

A relation between a generating series constructed from arithmetic cycles on an integral model of a Shimura curve and the derivative of a Siegel Eisenstein series of genus 2 was established by one of us in [9]. There, the hope is expressed that such a relation should hold in greater generality for integral models of Shimura varieties attached to orthogonal groups of signature (2, n − 2) for any...

متن کامل

Modularity of Generating Functions of Special Cycles on Shimura Varieties

Modularity of Generating functions of Special Cycles on Shimura Varieties

متن کامل

Unitary Cycles on Shimura Curves and the Shimura Lift I

This paper concerns two families of divisors, which we call the ‘orthogonal’ and ‘unitary’ special cycles, defined on integral models of Shimura curves. The orthogonal family was studied extensively by Kudla-Rapoport-Yang, who showed that they are closely related to the Fourier coefficients of modular forms of weight 3/2, while the unitary divisors are analogues of cycles appearing in more rece...

متن کامل

P -adic Uniformization of Unitary Shimura Varieties

Introduction Let Γ ⊂ PGUd−1,1(R) 0 be a torsion-free cocompact lattice. Then Γ acts on the unit ball B ⊂ C by holomorphic automorphisms. The quotient Γ\B is a complex manifold, which has a unique structure of a complex projective variety XΓ (see [Sha, Ch. IX, §3]). Shimura had proved that when Γ is an arithmetic congruence subgroup, XΓ has a canonical structure of a projective variety over some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2018

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rny119